
 Copyright 2007 Daniel B. Cid

Log Analysis using OSSEC

Daniel B. Cid
dcid@ossec.net

 Copyright 2007 Daniel B. Cid

Agenda

● Defining LIDS (Log-Based IDS)
● OSSEC Overview
● Installation demo
● Log decoding and analysis with OSSEC
● Writing decoders
● Writing rules
● Examples of rules and alerts in the real world

 Copyright 2007 Daniel B. Cid

Concepts

● OSSEC does “security log analysis”
➔ It is not a log management tool
➔ Only stores alerts, not every single log
➔ I still recommend log management and long term storage of

ALL logs

● Security Log Analysis can be called LID(S)
➔ Log-based Intrusion Detection System
➔ We could even call it OSSEC LIDS, since some users only

use the log analysis side of OSSEC

 Copyright 2007 Daniel B. Cid

Defining LIDS

● Log-Based Intrusion Detection

Log Analysis for intrusion detection is the process or techniques used to
detect attacks on a specific environment using logs as the primary source
of information.

LIDS is also used to detect computer misuse, policy violations and other
forms of inappropriate activities.

 Copyright 2007 Daniel B. Cid

LIDS benefits
● Cheap to implement

➔ OSSEC is free, for example
➔ Does not require expensive hardware

● High visibility of encrypted protocols
➔ SSHD and SSL traffic are good examples

● Visibility of system activity (kernel, internal daemons,..)

● Every application/system can be a part of it
➔ They all have some kind of log!
➔ Including firewalls, routers, web servers, applications, etc

 Copyright 2007 Daniel B. Cid

What is OSSEC?

● Open Source Host-based IDS (HIDS)
● http://www.ossec.net
● Main tasks:

➔ Log analysis
➔ File Integrity checking (Unix and Windows)
➔ Registry Integrity checking (Windows)
➔ Host-based anomaly detection (for Unix – rootkit detection)
➔ Active response

 OSSEC is an Open Source Host-based Intrusion Detection System. It
performs log analysis, integrity checking, Windows registry
monitoring, Unix-based rootkit detection, real-time alerting and active
response.

 Copyright 2007 Daniel B. Cid

Why OSSEC?
● Solves a real problem and does it well (log analysis)
● Free (as in cookies and speech)
● Easy to install
● Easy to customize (rules and config in xml format)
● Scalable (client/server architecture)
● Multi-platform (Windows, Solaris, Linux, *BSD, etc)
● Secure by default
● Comes with hundreds of decoders/rules out of the box:

➔ Unix Pam, sshd (OpenSSH), Solaris telnetd, Samba, Su, Sudo, Proftpd,
Pure-ftpd, vsftpd, Microsoft FTP server, Solaris ftpd, Imapd, Postfix,
Sendmail, vpopmail, Microsoft Exchange, Apache, IIS5, IIS6, Horde IMP,
Iptables, IPF. PF, Netscreen, Cisco PIX/ASA/FWSM, Snort, Cisco IOS,
Nmap, Symantec AV, Arpwatch, Named, Squid, Windows event logs, etc
,etc,

 Copyright 2007 Daniel B. Cid

Why OSSEC (2)?

● External references:
➔ OSSEC #1 open source security tool in the enterprise
 http://www.linuxworld.com/news/2007/031207-top-5-

security.html
➔ OSSEC #2 IDS tool in the security tools survey.
 http://sectools.org/ids.html

● Additional references:
 http://www.ossec.net/wiki/index.php/IntheNews

 Copyright 2007 Daniel B. Cid

Installing OSSEC

● Simple and easy
➔ Two models:
 Local (when you have just one system to monitor)
 Client/Server for centralized analysis (recommended!)
➔ Select installation type and answer a few questions
➔ It will setup the appropriate permissions, create users, etc

● Installation Demo (of latest version 1.2)
tar -zxvf ossec*.tar.gz
cd ossec*
./install.sh
... (answer all questions)
/var/ossec/bin/ossec-control start (after completed)

 Copyright 2007 Daniel B. Cid

Understanding OSSEC

● OSSEC two working models
➔ Local (useful when you have only one system to monitor)
➔ Agent/Server (recommended!)

● By default installed at /var/ossec
● Main configuration file at /var/ossec/etc/ossec.conf
● Decoders stored at /var/ossec/etc/decoders.xml
● Binaries at /var/ossec/bin/
● All rules at /var/ossec/rules/*.xml
● Alerts are stored at /var/ossec/logs/alerts.log
● Composed of multiple processes (all controlled by

ossec-control)

 Copyright 2007 Daniel B. Cid

Internal processes
● Remember the Secure by default?

➔ Installation script does the chroot, user creation, permissions,
etc

➔ User has no choice to run it “less secure”
● Each process with limited privileges and tasks

➔ Most of them running on chroot
➔ Most of them with separated unprivileged user

● Processes:
➔ Analysisd – on chroot as user ossec
➔ Remoted – on chroot as user ossecr
➔ Maild – on chroot as user ossecm
➔ Logcollector – as root, but only reads the logs, no analysis
➔ Agentd – on chroot as user ossec (agent only)

 Copyright 2007 Daniel B. Cid

Internal processes (2)
● Each daemon has a very limited task:

➔ Analysisd – Does all the analysis (main process)
➔ Remoted – Receives remote logs from agents
➔ Logcollector – Reads log files (syslog, Flat files, Windows

event log, IIS, etc)
➔ Agentd – Forwards logs to the server
➔ Maild – Sends e-mail alerts
➔ Execd – Executes the active responses
➔ Monitord – Monitors agent status, compresses and signs log

files, etc
● ossec-control manages the start and stop of all of

them

 Copyright 2007 Daniel B. Cid

Log flow (local)

● Generic log analysis flow breakdown (for ossec local)
➔ Log collecting is done by ossec-logcollector
➔ Analysis and decoding are done by ossec-analysisd
➔ Alerting is done by ossec-maild
➔ Active responses are done by ossec-execd

Collect

Analyze
Collect

Decode Alert

OSSEC Local

(ossec-analysisd) (ossec-maild)
(ossec-execd)(ossec-logcollector)

 Copyright 2007 Daniel B. Cid

Log flow (agent/server)

● Generic log analysis flow for client/server architecture
➔ Log collecting is done by ossec-logcollector
➔ Analysis and decoding are done by ossec-analysisd
➔ Alerting is done by ossec-maild
➔ Active responses are done by ossec-execd

Collect

Analyze
Collect

Decode Alert

OSSEC ServerOSSEC Agent

(ossec-analysisd) (ossec-maild)
(ossec-execd)(ossec-logcollector)

 Copyright 2007 Daniel B. Cid

Network communication

● Agent/Server network communication
➔ Compressed (zlib)
➔ Encrypted using pre-shared keys with blowfish
➔ By default uses UDP port 1514
➔ Multi-platform (Windows, Solaris, Linux, etc)

Agentd

Remoted

OSSEC Server

Agent 1

Agentd
Agent 2

Syslog
Device 1

Analysisd

UDP
port 1514

 Copyright 2007 Daniel B. Cid

Deep into Log Analysis

● Focus now on the main process (ossec-analysisd)
➔ It does the log decoding and analysis
➔ Hard worker!

● Log pre-decoding
● Log decoding
● Log Analysis
● Example of alerts

 Copyright 2007 Daniel B. Cid

Internal log flow

● Log flow inside analysisd
● Three main parts:

➔ Pre-decoding (extracts known fields, like time, etc)
➔ Decoding (using user-defined expressions)
➔ Signatures (using user-defined rules)

Pre-decoding

Log flow
(inside analysisd)

Log arrives
Decoding

User-defined
decoders

Signatures

User-defined
rules

 Copyright 2007 Daniel B. Cid

Log pre-Decoding (1)

● Extracts generic information from logs
➔ Hostname, program name and time from syslog header
➔ Logs must be well formated

● How OSSEC does it?
➔ Log comes in as:

Apr 13 13:00:01 enigma syslogd: restart
➔ How will it look like inside OSSEC?
 time/date -> Apr 13 13:00:01
 hostname -> enigma
 program_name -> syslogd
 log -> restart

 Copyright 2007 Daniel B. Cid

Log pre-Decoding (2)

● Decoding of a SSHD message:
➔ Log comes in as:

Apr 14 17:32:06 enigma sshd[1025]: Accepted password for root from
192.168.2.190 port 1618 ssh2

➔ How will it look like inside OSSEC after pre-Decoding?
 time/date -> Apr 14 17:32:06
 hostname -> enigma
 program_name -> sshd
 log -> Accepted password for root from 192.168.2.190 port ...

 Copyright 2007 Daniel B. Cid

Log pre-Decoding (3)

● Decoding of an ASL message (Mac users):
➔ Log comes in as:

[Time 2006.12.28 15:53:55 UTC] [Facility auth] [Sender sshd] [PID 483]
[Message error: PAM: Authentication failure for username from
192.168.0.2] [Level 3] [UID -2] [GID -2] [Host mymac]

➔ How will it look like inside OSSEC after pre-Decoding?
 time/date -> Dec 28, 2006 15:53:55
 hostname -> mymac
 program_name -> sshd
 log -> error: PAM: Authentication failure for username from 192.168.0.2

 Copyright 2007 Daniel B. Cid

Log Decoding (1)

● Process to identify key information from logs
➔ Most of the time you don't need to worry about it
➔ OSSEC comes with hundreds of decoders by default
➔ Generally we want to extract source ip, user name, id ,etc
➔ User-defined list (XML) at decoders.xml
➔ Tree structure inside OSSEC

● How a log will look like after being decoded:
Apr 14 17:32:06 enigma sshd[1025]: Accepted password for root from
192.168.2.190 port 1618 ssh2

 time/date -> Apr 14 17:32:06
 hostname -> enigma
 program_name -> sshd
 log -> Accepted password for root from 192.168.2.190 port ...

srcip -> 192.168.2.190
user -> root

 Copyright 2007 Daniel B. Cid

Writing decoders 101
● Writing a decoder. What it requires?

➔ Decoders are all stored at etc/decoders.xml
➔ Choose a meaningful name so they can be referenced in the

rules
➔ Extract any relevant information that you may use in the rules

● sshd example:
➔ We want to extract the user name and source ip
➔ If program name was pre-decoded as sshd (remember pre-

decoding?), try this regular expression

<decoder name="sshd-success">
 <program_name>sshd</program_name>
 <regex>^Accepted \S+ for (\S+) from (\S+) port </regex>
 <order>user, srcip</order>
</decoder>

 Copyright 2007 Daniel B. Cid

Writing decoders 102
● Decoders guidelines

➔ Decoders must have either prematch or program_name
➔ regex is used to extract the fields
➔ order is used to specify what each field means
➔ Order can be: id, srcip, dstip, srcport, dstport, url, action, status,

user, location, etc
➔ Offset can be: “after_prematch” or “after_parent”

● Vsftpd example:
Sun Jun 4 22:08:39 2006 [pid 21611] [dcid] OK LOGIN: Client
"192.168.2.10"

<decoder name="vsftpd">
 <prematch>^\w\w\w \w\w\w\s+\d+ \S+ \d+ [pid \d+] </prematch>
 <regex offset="after_prematch">Client "(\d+.\d+.\d+.\d+)"$</regex>
 <order>srcip</order>
</decoder>

 Copyright 2007 Daniel B. Cid

Writing decoders 103
● Grouping multiple decoders under one parent

➔ Use parent tag to specify the parent of the decoder
➔ Will create a tree structure, where the sub-decoders are only

evaluated if their parent matched.

● sshd example 2:

<decoder name="sshd">
 <program_name>^sshd</program_name>
</decoder>

<decoder name="sshd-success">
 <parent>sshd</parent>
 <prematch>^Accepted</prematch>
 <regex offset="after_prematch">^ \S+ for (\S+) from (\S+) port </regex>
 <order>user, srcip</order>
</decoder>

 Copyright 2007 Daniel B. Cid

Writing decoders 103 (2)
● sshd example 3:

<decoder name="sshd">
 <program_name>^sshd</program_name>
</decoder>

<decoder name="sshd-success">
 <parent>sshd</parent>
 <prematch>^Accepted</prematch>
 <regex offset="after_prematch">^ \S+ for (\S+) from (\S+) port </regex>
 <order>user, srcip</order>
</decoder>

<decoder name="ssh-failed">
 <parent>sshd</parent>
 <prematch>^Failed \S+ </prematch>
 <regex offset="after_prematch">^for (\S+) from (\S+) port </regex>
 <order>user, srcip</order>
</decoder>

 Copyright 2007 Daniel B. Cid

Writing decoders 103 (3)

● Apache access log example:
➔ We extract the srcip, id and url

192.168.2.190 - - [18/Jan/2006:13:10:06 -0500] "GET /xxx.html HTTP/1.1"
200 1732

<decoder name="web-accesslog">
 <type>web-log</type>
 <prematch>^\d+.\d+.\d+.\d+ </prematch>
 <regex>^(\d+.\d+.\d+.\d+) \S+ \S+ [\S+ \S\d+] </regex>
 <regex>"\w+ (\S+) HTTP\S+ (\d+) </regex>
 <order>srcip, url, id</order>
</decoder>

 Copyright 2007 Daniel B. Cid

Log Rules (1)

● Next step after decoding is to check the rules
➔ Internally stored in a tree structure
➔ User-defined XML
➔ Very easy to write!
➔ Allows to match based on decoded information
➔ Independent of initial log format, because of decoders
➔ OSSEC comes with more than 400 rules by default!

● Two types of rules:
➔ Atomic (based on a single event)
➔ Composite (based on patterns across multiple logs)

 Copyright 2007 Daniel B. Cid

Writing your own rules 101

● Writing your first rule. What it requires?
➔ A Rule id (any integer)
➔ A Level - from 0 (lowest) to 15 (highest)
➔ Level 0 is ignored, not alerted at all
➔ Pattern - anything from “regex”, to “srcip”, “id”, “user”, etc

● First example (simple sshd rule)
➔ If log was decoded as sshd, generate rule “111”

<rule id = "111" level = "5">
 <decoded_as>sshd</decoded_as>
 <description>Logging every decoded sshd message</description>
</rule>

 Copyright 2007 Daniel B. Cid

Writing your own rules 102

● Second rule, for failed sshd messages
➔ We will create a second rule, dependent on the first
➔ Higher severity (level 7)
➔ Will only be executed if the first one matches (if_sid)
➔ Match is a simple pattern matching (looking for Failed pass)

<rule id = "111" level = "5">
 <decoded_as>sshd</decoded_as>
 <description>Logging every decoded sshd message</description>
</rule>

<rule id=”122” level=”7”>
 <if_sid>111</if_sid>
 <match>^Failed password</match>
 <description>Failed password attempt</description>
</rule>

 Copyright 2007 Daniel B. Cid

Writing your own rules 103
● Using additional rule options

➔ We will create a third rule, dependent on the second
➔ Will only be called if the second one matches!
➔ Looks if the hostname was decoded as mainserver
➔ Looks if the decoded IP address is outside the network

<rule id=”122” level=”7”>
 <if_sid>111</if_sid>
 <match>^Failed password</match>
 <description>Failed password attempt</description>
</rule>

<rule id=”133” level=”13”>
 <if_sid>122</if_sid>
 <hostname>^mainserver</hostname>
 <srcip>!192.168.2.0/24</srcip>
 <description>Higher severity! Failure on the main server</description>
</rule>

 Copyright 2007 Daniel B. Cid

 Writing your own rules 103(2)

● Rule for Apache web logs
➔ We will create one generic rule for all web logs (501)
➔ One sub-rule to alert on ids 4xx or 5xx (HTTP errors)
➔ We use here the “id” tag, which is also set in the decoder

<rule id=”501” level=”3”>
 <decoded_as>web_log</decoded_as>
 <description>Generic rule for apache logs</description>
</rule>

<rule id=”502” level=”6”>
 <if_sid>501</if_sid>
 <id>^4|^5</id>
 <description>Log with id 4xx or 5xx</description>
</rule>

 Copyright 2007 Daniel B. Cid

Rule structure after ...

● Internal structure after first five rules.
➔ Not a flat format (like most log analysis tools)!
➔ Very fast! Non-sshd messages are only checked against

the first rule (111), not the sub ones
➔ Average of only 7/8 rules per log, instead of 400 (what we

have enabled by default)

111

133

122

Log Arrives

Try first one (123); If matches,
try sub-rules; ...

501 xxx

If doesn't match, try next one ...

 Copyright 2007 Daniel B. Cid

 Writing your own rules 103(3)
● A few more advanced rule options

➔ Rule for successful sshd logins
➔ Policy-based options, based on time, day of the week, etc
➔ You can use groups to classify your rules better

<rule id = "153" level = "5">
 <if_sid>111</if_sid>
 <match>Accepted password </match>
 <description>Successful login</description>
 <group>login_ok</group>
</rule>

<rule id=”154” level=”10”>
 <if_sid>153</if_sid>
 <time>6 pm - 8:30 am</time>
 <description>Alert! Logins outside business hours!</description>
 <group>login_ok,policy_violation</group>
</rule>

 Copyright 2007 Daniel B. Cid

Writing your own rules 200
● Composite rules

➔ Rule for multiple failed password attempts
➔ We set frequency and timeframe
➔ if_matched_sid: If we see this rule more than X times

within Y seconds.
➔ same_source_ip: If they were decoded from same IP.

<rule id=”133” level=”7”>
 <if_sid>111</if_sid>
 <match>^Failed password</match>
 <description>Failed password attempt</description>
</rule>

<rule id=”1050” level=”11” frequency=”5” timeframe=”120”>
 <if_matched_sid>133</if_matched_sid>
 <same_source_ip />
 <description>Multiple failed attempts from same IP!</description>
</rule>

 Copyright 2007 Daniel B. Cid

Rules in real world

● Do not modify default rules
➔ They are overwritten on every upgrade
➔ Use local_rules.xml instead (not modified during upgrade)
➔ Use and abuse of if_sid, if_group (remember, classify your

rules under groups), etc
➔ Use an ID within the range 100000-109999 (user assigned)

● If adding support for new rules or new log formats
➔ Send them to us, so we can include in ossec
➔ We will assign a range ID for your rules

 Copyright 2007 Daniel B. Cid

Rules in real world (2)

● Alerting on every authentication success outside
business hours
➔ Every authentication message is classified as “authentication

success” (why we use if_group)
➔ Add to local_rules.xml:

 <rule id="100005" level="10">
 <if_group>authentication_success</if_group>
 <time>6 pm - 7:30 am</time>
 <description>Login during non-business hours.</description>
 </rule>

 Copyright 2007 Daniel B. Cid

Rules in real world (3)

● Changing frequency or severity of a specific rule
➔ Rule 5712 alerts on SSHD brute forces after 6 failed attempts
➔ To increase the frequency, just overwrite this rule with a

higher value. Same applies to severity (level).
➔ You can change any value from the original rule by

overwriting it
➔ Add to local_rules.xml:

<rule id="5712" level="10" frequency="20" overwrite=”yes”>
 <if_matched_sid>5710</if_matched_sid>
 <description>SSHD brute force trying to get access to </description>
 <description>the system.</description>
 <group>authentication_failures,</group>
 </rule>

 Copyright 2007 Daniel B. Cid

LID Examples - Squid logs

● Rule to detect internal hosts scanning the outside
➔ Useful to detect worms, malicious users, etc
➔ Will fire if same internal system generates multiple 500/600

error codes on different URLs

 <rule id="35009" level="5">
 <id>^5|^6</id>
 <description>Squid 500/600 error code (server error).</description>
 </rule>
 <rule id="35058" level="10" frequency="6" timeframe="240">
 <if_matched_sid>35009</if_matched_sid>
 <same_source_ip />
 <different_url />
 <description>Multiple 500/600 error codes (server error).</description>
 </rule>

 Copyright 2007 Daniel B. Cid

LID Examples - Squid logs 2

● Indication of an internal compromised system:

Received From: (proxy) 10.1.2.3->/var/log/squid/access.log
Rule: 35058 fired (level 10) -> "Multiple 500/600 error codes (server error)."
Portion of the log(s):

179993 1.2.3.4 TCP_MISS/504 1430 GET http://xx.com/cgi/stats/awstats.pl
- NONE/- text/html

179504 1.2.3.4 TCP_MISS/504 1410 GET http://xx.com/awstats.pl - NONE/-
text/html

179493 1.2.3.4 TCP_MISS/504 1422 GET http://xx2.com/stats/awstats.pl -
NONE/- text/html

179494 1.2.3.4 TCP_MISS/504 1438 GET http://xx2.com//cgi-
bin/stats/awstats.pl - NONE/- text/html

179507 1.2.3.4 TCP_MISS/504 1426 GET
http://xx3.com/awstats/awstats.pl - NONE/- text/html

 Copyright 2007 Daniel B. Cid

LID Examples - Web logs

● Rule to detect large URLs
➔ Any URL longer than 2900 characters is very suspicious

 <rule id="31115" level="13" maxsize="2900">
 <if_sid>31100</if_sid>
 <description>URL too long. Higher than allowed on most </description>
 <description>browsers. Possible attack.</description>
 <group>invalid_access,</group>
 </rule>

 Copyright 2007 Daniel B. Cid

LID Examples - Web logs 2

● Indication of an attack detected
➔ Now, what if you see that from an internal box?

OSSEC HIDS Notification.
2007 Feb 18 20:52:27

Received From: (jul) 192.168.2.0->/var/log/apache/access_log
Rule: 31115 fired (level 13) -> "URL too long. Higher than allowed on most

browsers."
Portion of the log(s):

142.167.9.242 - - [18/Feb/2007:21:43:49 -0400] "SEARCH
/\x90\xc9\xc9\xc9\xc9\xc9

\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\
9\xc99\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\x9
\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9
\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9\xc9...

 Copyright 2007 Daniel B. Cid

LID Examples – Snort logs
● Multiple IDS events from same source IP address

2007 May 08 14:10:58 (jul) 192.168.2.0->/var/log/snort/alert
Rule: 20152 (level 10) -> 'Multiple IDS alerts from same IP Address.'
[**] [1:648:7] SHELLCODE x86 NOOP [**][Classification: Executable code was

detected] [Priority: 1] 142.167.24.154:1238 -> 192.168.2.32:80
[**] [1:648:7] SHELLCODE x86 NOOP [**][Classification: Executable code was

detected] [Priority: 1] 142.167.24.154:1238 -> 192.168.2.32:80
[**] [1:648:7] SHELLCODE x86 NOOP [**][Classification: Executable code was

detected] [Priority: 1] 142.167.24.154:1238 -> 192.168.2.32:80
[**] [119:4:1] (http_inspect) BARE BYTE UNICODE ENCODING

[Classification: Preprocessor] 142.167.24.154:1238 -> 192.168.2.32:80
[**] [119:15:1] (http_inspect) OVERSIZE REQUEST-URI DIRECTORY

[**][Classification: access to a potentially vulnerable web application]
[Priority: 2] 142.167.24.154:1238 -> 192.168.2.32:80

[**] [1:1070:9] WEB-MISC WebDAV search access Classification: access to a
potentially vulnerable application] 142.167.24.154:1238 -> 192.168.2.32:80

 Copyright 2007 Daniel B. Cid

LID Examples - Auth logs

● Brute force attempts
● Not only for SSHD, but also ftpd, imapd, webmails, etc

OSSEC HIDS Notification.
2007 Feb 21 05:37:59

Received From: enigma->/var/log/authlog
Rule: 5712 fired (level 10) -> "SSHD brute force trying to get access to the sys
tem."

Feb 21 05:37:58 enigma sshd[7235]: Failed password for invalid user admin
from 125.152.17.236 port 42198 ssh2

Feb 21 05:37:58 enigma sshd[14507]: Invalid user admin from 125.152.17.236
Feb 21 05:37:56 enigma sshd[10566]: Failed password for invalid user admin

from 125.152.17.236 port 42132 ssh2
Feb 21 05:37:56 enigma sshd[11502]: Invalid user admin from 125.152.17.236

 Copyright 2007 Daniel B. Cid

LID Examples - Auth logs 2
● Brute force attempts followed by a success

Rule: 5720 (level 10) -> 'Multiple SSHD authentication failures.'
Src IP: 125.192.xx.xx
Feb 11 09:31:58 wpor sshd[4565]: Failed password for root from

125.192.xx.xx port 42976 ssh2
Feb 11 09:31:58 wpor sshd[4565]: Failed password for admin from

125.192.xx.xx port 42976 ssh2
Feb 11 09:31:58 wpor sshd[4565]: Failed password for admin from

125.192.xx.xx port 42976 ssh2

Rule: 40112 (level 12) -> 'Multiple authentication failures followed by
a success.'

Src IP: 125.192.xx.xx
User: admin
Feb 11 09:31:58 wpor sshd[7235]: Accepted password for admin

from 125.192.xx.xx port 42198 ssh2

 Copyright 2007 Daniel B. Cid

Conclusion

● OSSEC is very extensible and provides out of the box
functionality

● Try it out and check for yourself! :)
● Lots of new features planned for the future
● Web Interface also available

● Look at our manual and FAQ for more information:
http://www.ossec.net

● For questions and support, subscribe to our mailing list
or visit us at #ossec on freenode

http://www.ossec.net/

 Copyright 2007 Daniel B. Cid

QUESTIONS ?

